逃逸攻击上篇

逃逸攻击上篇

参考文献

[1] Chi-Hsuan Huang, Tsung-Han Lee, Lin-huang Chang,等. Adversarial Attacks on SDN-Based Deep Learning IDS System[C]. International Conference on Mobile & Wireless Technology. Springer, Singapore, 2018.

[2] M. Rigaki. Adversarial Deep Learning Against Intrusion Detection Classifiers. Dissertation, 2017.

[3] Ibitoye O, Shafiq O, Matrawy A, et al. Analyzing Adversarial Attacks against Deep Learning for Intrusion Detection in IoT Networks[C]. global communications conference, 2019.

[4] Clements J, Yang Y, Sharma A A, et al. Rallying Adversarial Techniques against Deep Learning for Network Security.[J]. arXiv: Cryptography and Security, 2019.

[5] Wang Z. Deep Learning-Based Intrusion Detection With Adversaries[J]. IEEE Access, 2018: 38367-38384.

[6] Hartl A, Bachl M, Fabini J, et al. Explainability and Adversarial Robustness for RNNs.[J]. arXiv: Learning, 2019.

[7] 潘一鸣, 林家骏. 基于生成对抗网络的恶意网络流生成及验证[J]. 华东理工大学学报(自然科学版), 2019, 45(02):165-171.

[8] Rigaki M, Garcia S. Bringing a GAN to a Knife-Fight: Adapting Malware Communication to Avoid Detection[C]. ieee symposium on security and privacy, 2018: 70-75.

[9] Usama M, Asim M, Latif S, et al. Generative Adversarial Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion Detection Systems[C]. international conference on wireless communications and mobile computing, 2019: 78-83.

[10] Hashemi, M. J., Cusack, G, et al. Towards Evaluation of NIDSs in Adversarial Setting. the 3rd ACM CoNEXT Workshop on Big Data, Machine Learning and Artificial Intelligence for Data

Communication Networks. 2019: 14-21.

[11] Kuppa A, Grzonkowski S, Asghar M R, et al. Black Box Attacks on Deep Anomaly Detectors[C]. availability, reliability and security, 2019.

[12] Alhajjar, E, Paul M and Nathanie D. B. Adversarial Machine Learning in Network Intrusion Detection Systems. arXiv preprint arXiv:2004.11898 (2020).

[13] Huang W, Peng X, Shi Z, et al. Adversarial Attack against LSTM-based DDoS Intrusion Detection System. arXiv preprint arXiv:2613.1684 (2020).

[14] Peng X, Huang W, Shi Z, et al. Adversarial Attack Against DoS Intrusion Detection: An Improved Boundary-Based Method[C]. international conference on tools with artificial intelligence, 2019.

[15] Goodfellow I J , Shlens J , Szegedy C . Explaining and harnessing adversarial examples[C]// ICML. 2015.

[16] Szegedy, C, et al. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).

[17] Carlini N , Wagner D . Towards Evaluating the Robustness of Neural Networks[J]. 2016.

相关推荐

埃及国家足球队
000-365 bet

埃及国家足球队

📅 06-29 👁️ 7439
在线手机号码提取工具
bt365体育官网育

在线手机号码提取工具

📅 06-30 👁️ 9581
与其问为啥波兰为什么能诞生游戏大厂,不如问,为啥中国很少有企业去开发单机游戏